
571

■ ■ ■

A P P E N D I X A

Installation Instructions

In this appendix, you’ll find instructions for installing the following applications:

• .NET Framework 2.0

• Microsoft Jet Engine

• Visual Web Developer 2005 Express Edition

• SQL Server 2005 Express Edition

• SQL Server 2005 Management Studio Express

• MySQL 5.0

• MySQL Query Browser 1.1

• MySQL Connector/ODBC 3.51

• MySQL Connector/NET 1.0

.NET Framework 2.0 Installation
Before you can install any of the other applications, you’ll need to install .NET Framework 2.0.

Follow these steps:

1. Download the .NET 2.0 Redistributable Package installer from the Microsoft site at

http://msdn.microsoft.com/netframework/downloads/updates/default.aspx. Follow

the quick link for .NET Framework 2.0 and download the correct version of the redis-

tributable package. (dotnetfx.exe is 22.4MB.)

2. After the package has downloaded, double-click it and let the installer run.

Microsoft Jet Engine Installation
Since the release of Microsoft Data Access Components (MDAC) 2.6, the Jet engine isn’t installed

by default. Therefore, if you don’t have Microsoft Access installed, you may not have the Jet

engine. To install the latest version, follow these instructions:

572 A P P E N D I X A ■ I N S T A L L A T I O N I N S T R U C T I O N S

1. Download the latest version of the Jet engine from the Microsoft Jet Security Bulletin

MS04-014 page of Microsoft TechNet, http://www.microsoft.com/technet/security/

bulletin/ms04-014.mspx.

2. After the package has downloaded, double-click the installer and let it run.

Visual Web Developer 2005

Express Edition Installation
All of the examples in the book are built using Visual Web Developer 2005 Express Edition.

At the time of writing, you can download it for free.

■Note Visual Web Developer Express Edition is available free for only a limited period, which as yet doesn’t

have a specified end date. Microsoft has been saying “for the next year,” so you should be able to get the free

version until at least the end of December 2006.

Follow these instructions to download and install Visual Web Developer Express Edition.

1. Download the latest version of Visual Web Developer from http://msdn.microsoft.

com/vstudio/express/vwd. (vwdsetup.exe is a little under 3MB.)

2. After the package has downloaded, double-click the installer to run it.

3. The first step of the wizard offers the Help Improve Setup option. This doesn’t affect the

installation process at all. You can check what information is sent to Microsoft by visiting

http://msdn.microsoft.com/vstudio/products/privacy. Once you’ve made your choice,

click the Next button.

4. Accept the terms of the license agreement and click the Next button.

5. You don’t need to install any of the extra packages, but you can choose to if you want

them. The documentation may come in quite handy, but it is a hefty download at 248MB.

Do not install SQL Server 2005 Express Edition, as some of the options that you’ll need

to set are not available if you install via this route. Click the Next button.

6. Click the Install button to start the installation. The installer will connect to the Internet

to download the necessary components (40MB for Visual Web Developer on its own).

If you want to get a cup of coffee, now is your chance.

7. Once setup is complete, you can choose to register your copy of Visual Web Developer

for a few extras. To decide if you want to register, see http://msdn.microsoft.com/

vstudio/express/register/default.aspx.

AP P E N D I X A ■ I N S T A L L A T I O N I N S T R U C T I O N S 573

SQL Server 2005 Express Edition Installation
To run the SQL Server 2005 versions of the examples in the book, you’ll need to install SQL

Server 2005 Express Edition and SQL Server 2005 Management Studio Express.

SQL Server 2005 Express Edition is a freely available, cut-down version of Microsoft’s SQL

Server 2005 Enterprise Database Server. To install it, follow these steps:

1. Download SQL Server 2005 Express Edition from http://msdn.microsoft.com/vstudio/

express/sql/default.aspx. (SQLEXPR.EXE is 53.5MB, so make sure there is enough space

on your hard drive, and have another cup of coffee handy.)

2. After the package has downloaded, double-click it. The necessary files will be extracted,

and the installer will be run automatically.

3. Accept the terms of the license agreement and click the Next button.

4. The SQL Server 2005 Express Edition prerequisites will now be installed. This will take a

couple of minutes. Once the prerequisites have been installed, click the Next button.

5. The installer will scan your computer's configuration and then run the “real” installer.

Click the Next button to proceed with the installation.

6. The installer will now perform a system configuration check to ensure that the minimum

installation requirements are met. Click the Next button to continue with the installation. It

is quite common at this point to have a Pending Reboot Requirement specified, halting

the installation. In this case, reboot your computer and run the installer again.

7. On the next step, enter your registration information and uncheck the Hide Advanced

Configuration Options check box. Click the Next button.

8. Accept the selected features by clicking the Next button.

9. You’re going to install SQL Server 2005 Express as a named instance, so select the Named

Instance option and enter BAND, as shown in Figure A-1. (You can have multiple instances of

SQL Server 2005 running on the same machine, and you’ve used an instance named BAND to

keep the databases for this book separated from others.) Click the Next button.

10. On the Service Account step, select the default option of using the Network Service

account by clicking the Next button.

11. On the Authentication Mode step, switch the authentication mode of the database to

Mixed Mode by clicking the correct radio button and entering the password that you

want for the sa account. For the purposes of this book, enter bandpass as both the

password and its confirmation, as shown in Figure A-2. (You can use a different password

if you prefer, but then you must make sure that you use the password you have chosen

instead of the one in the instructions throughout the examples in this book.) Click the

Next button.

574 A P P E N D I X A ■ I N S T A L L A T I O N I N S T R U C T I O N S

Figure A-1. Specifing the name of the SQL Server instance to create

Figure A-2. Entering the login details for the sa account

AP P E N D I X A ■ I N S T A L L A T I O N I N S T R U C T I O N S 575

12. On the Collation Settings step, select the default options by clicking the Next button.

13. Click Next to allow user instances of SQL Server.

14. On the Error and Usage Reporting Settings step, you can choose to turn on reporting if

you wish. Once you’ve made your choice, click the Next button.

15. Click the Install button to begin installation of SQL Server 2005 Express Edition.

16. The installation may take a little time. Once it is finished, click the Next button to con-

tinue to the Summary step. Click Finish to close the installer.

17. You may need to restart your machine once the installer has finished.

You now need to check that SQL Server 2005 Express Edition has installed correctly. The

way to do this differs across platforms, but for Windows XP, you can find it by selecting Start

Menu ➤ Settings ➤ Control Panel ➤ Administrative Tools ➤ Services. This launches the Services

tool, as shown in Figure A-3.

Figure A-3. The Services tool shows the new instance of SQL Server 2005 Express Edition.

Look for a service called SQL Server (BAND) in the list. This is your installation of SQL

Server 2005 Express Edition. As you can see in Figure A-3, there are two instances of SQL Server

2005 installed on the machine: the instance that you’ve just installed (BAND) and the default

instance on this machine (MSSQLSERVER). Make sure the Status and Startup Type options are set

to Started and Automatic, respectively. The Startup Type setting will ensure that SQL Server

2005 Express Edition starts automatically whenever your computer is rebooted.

■Note You can install several instances of SQL Server 2005 side by side on one machine. In fact, you can

even install different versions of SQL Server on the same machine. The one for this book is named BAND (for

Beginning ASP.NET Databases), and as it’s a SQL Server 2005 database, it’s called SQL Server (BAND).

576 A P P E N D I X A ■ I N S T A L L A T I O N I N S T R U C T I O N S

SQL Server 2005 Management Studio

Express Installation
SQL Server 2005 Management Studio Express is a graphical front-end tool for administering

SQL Server 2005. Although the current free version is a Community Technical Preview, it is very

stable. It’s a cut-down version of the tool that is provided with the full version of SQL Server

2005. To install it, follow these steps:

1. Go to http://msdn.microsoft.com/vstudio/express/sql/default.aspx and click the

Download SQL Server Management Studio Express link. Then download the correct

installer. (SQLServer2005_SSMSEE.msi is slightly under 30MB, so you’ll need your third

cup of coffee here.)

2. After the package has downloaded, open the installer by double-clicking it.

3. Skip past the Welcome step by clicking the Next button, accept the terms and conditions

on the next step, and click the Next button again.

4. Enter your registration details and click the Next button.

5. Click the Next button to accept the selected features, and then click the Install button to

begin the installation.

6. Once the installation has completed, click the Finish button to close the installer.

MySQL 5.0 Installation
To build and run the MySQL 5.0 examples, you’ll need to install MySQL 5.0, as well as MySQL

Query Browser and MySQL Connector/ODBC. To follow the stored procedure examples in

Chapter 10, you’ll need to install MySQL Connector/NET.

To install the database server, follow these steps:

1. Download the Community Edition - Windows Essentials installer from http://dev.

mysql.com/downloads/mysql/5.0.html. (mysql-essential-5.0.18-win32.msi is 16.8MB.)

2. After the package is downloaded, double-click it. The files needed will be extracted, and

the installer will run automatically.

3. Click the Next button on the Welcome step and accept the Typical installation options

by clicking the Next button on the following step. Click the Install button to start the

actual installation.

4. On the Sign Up step, you can choose to log in or create an account to MySQL.com.

Alternatively, you can click the Skip Sign-Up option. Once you’ve made your selection,

click the Next button.

5. Click the Finish button to configure the newly installed database server.

AP P E N D I X A ■ I N S T A L L A T I O N I N S T R U C T I O N S 577

6. Click the Next button on the first step of the Configuration wizard and choose the

Standard Configuration on the following step. Click the Next button.

7. Make sure that both the Install As Windows Service and Include Bin Directory in

Windows PATH options are checked, and then click the Next button.

8. Enter a bandpass as both the password and its confirmation. Then click the Next button.

9. Click the Execute button to perform the configuration.

10. Once the configuration is completed, click the Finish button to close the Configuration

wizard.

To check that MySQL 5.0 has installed correctly, you need to verify that the service is

installed and is running. Open the Services tool by selecting Start Menu ➤ Settings ➤ Control

Panel ➤ Administrative Tools ➤ Services. In the list of services, look for the MySQL service, as

shown in Figure A-4. Make sure the Status and Startup Type options are set to Started and

Automatic, respectively. The Startup Type setting will ensure that MySQL 5.0 is started auto-

matically whenever your computer is rebooted.

Figure A-4. The Services tool shows the MySQL service.

MySQL Query Browser 1.1 Installation
MySQL Query Browser 1.1 is a graphical front-end tool for administering MySQL 5.0. To install

it, follow these instructions:

1. Download the Windows installer from http://dev.mysql.com/downloads/query-browser/

1.1.html. (mysql-query-browser-1.1.19-win.msi is 5.1MB.)

2. After the package has downloaded, double-click it. The necessary files will be extracted,

and the installer will run automatically.

578 A P P E N D I X A ■ I N S T A L L A T I O N I N S T R U C T I O N S

3. Accept the terms of the license agreement.

4. On the Setup Type step of the installation wizard, choose to perform a Complete

installation.

MySQL Connector/ODBC 3.51 Installation
In order to use MySQL 5.0 with the Odbc data provider, you need to install the MySQL ODBC

driver. To install Connector/ODBC 3.51, follow these steps:

1. Download the Windows MSI package from http://dev.mysql.com/downloads/

connector/odbc/3.51.html. (mysql-connector-odbc-3.51.12-win32.msi is 2.3MB.)

2. After the package has downloaded, double-click it. The necessary files will be extracted,

and the installer will run automatically.

3. Accept the terms of the license agreement.

4. On the Setup Type step of the installation wizard, choose to perform a Typical install.

MySQL Connector/NET 1.0 Installation
In order to execute stored procedures in MySQL 5.0, you need to install the MySqlClient data

provider. (The MySQL ODBC driver doesn’t support all of the necessary features.) To install

Connector/NET 1.0, follow these steps:

1. Download the Source and Binaries ZIP file from http://dev.mysql.com/downloads/

connector/net/1.0.html. (mysql-connector-net-1.0.7.zip is 545KB.)

2. Open the downloaded ZIP file, and then double-click the MySql.Data.msi installer to

run the installer.

3. On the Setup Type step of the installation wizard, choose to perform a Typical installation.

579

■ ■ ■

A P P E N D I X B

SQL Data Types

Databases support the same core set of data types as defined in the SQL standard, but

annoyingly, they call these data type different things. This appendix provides an easy reference

to the data types defined in SQL Server 2005, MySQL 5.0, and Microsoft Access. In this appendix,

the data types are grouped as follows:

• Text types

• Numeric types

• Date and time types

• Binary types

• Miscellaneous types

Text Types
Several text-based types are defined in SQL and are distinguished by the following two main

characteristics:

• Does it support Unicode?

• Does it have a fixed length or a variable length?

If you choose a fixed-length type for a field, and the string it contains is smaller than that

length, the string is padded with spaces to make it the correct length. This padding won’t occur

if you use a variable-length data type, but you must specify a maximum length for the string

using the Length/Size property for the field.

580 A P P E N D I X B ■ S Q L D A T A T Y P E S

char

The char type maps to a string (System.String) in C# and is defined as follows:

• In SQL Server, char represents a fixed-length string of up to 8,000 non-Unicode characters.

You should use the SqlDbType.Char type identifier for parameters of this type.

• In MySQL, char represents a fixed-length string of up to 255 non-Unicode

characters. Depending on the data provider, you should use the OdbcType.Char

or MySqlClient.String type identifiers for parameters of this type.

• In Microsoft Access, the char type is called Text and represents a variable-length string

of up to 255 Unicode characters. You should use the OleDbType.Char type identifier for

parameters of this type.

longtext

The longtext type maps to a string (System.String) in C# and is defined as follows:

• In MySQL, longtext represents a variable-length string of up to 232-1 (4,294,967,295)

non-Unicode characters. Depending on the data provider, you should use the

OdbcType.Text or MySqlClient.String type identifiers for parameters of this type.

• There is no equivalent in SQL Server or Microsoft Access.

mediumtext

The mediumtext type maps to a string (System.String) in C# and is defined as follows:

• In MySQL, mediumtext represents a variable-length string of up to 224-1 (16,777,215)

non-Unicode characters. Depending on the data provider, you should use the

OdbcType.Text or MySqlClient.String type identifiers for parameters of this type.

• There is no equivalent in SQL Server or Microsoft Access.

nchar/national char

The nchar/national char type maps to a string (System.String) in C# and is defined as follows:

• In SQL Server, nchar represents a fixed-length string of up to 4,000 Unicode characters.

You should use the SqlDbType.NChar type identifier for parameters of this type.

• In MySQL, national char represents a fixed-length string of up to 255 Unicode

characters. Depending on the data provider, you should use the OdbcType.NChar

or MySqlClient.String type identifiers for parameters of this type.

• There is no equivalent in Microsoft Access.

A P P E N D I X B ■ S Q L D A T A T Y P E S 581

nvarchar/national varchar

The nvarchar/national varchar type maps to a string (System.String) in C# and is defined

as follows:

• In SQL Server, nvarchar represents a variable-length string of up to 4,000 Unicode char-

acters. You should use the SqlDbType.NVarChar type identifier for parameters of this type.

• In MySQL, national varchar represents a variable-length string of up to 65,535 Unicode

characters. Depending on the data provider, you should use the OdbcType.NVarChar or

MySqlClient.String type identifiers for parameters of this type.

• There is no equivalent in Microsoft Access.

SQL Server 2005 defines a new type nvarchar(max) that allows 230-1 (1,073,741,823) Unicode

characters to be stored. This is still a string in C#, but you should use the SqlDbType.NText type

identifier for parameters of this type.

ntext

The ntext type maps to a string (System.String) in C# and is defined as follows:

• In SQL Server, ntext represents a variable-length string of up to 230-1 (1,073,741,823)

Unicode characters. You should use the SqlDbType.NText type identifier for parameters

of this type.

• There is no equivalent in MySQL or Microsoft Access.

text

The text type maps to a string (System.String) in C# and is defined as follows:

• In SQL Server, text represents a variable-length string of up to 231-1 (2,147,483,647) non-

Unicode characters. You should use the SqlDbType.Text type identifier for parameters of

this type.

• In MySQL, text represents a variable-length string of up to 65,535 non-Unicode characters.

Depending on the data provider, you should use the OdbcType.Text or MySqlClient.String

type identifiers for parameters of this type.

• In Microsoft Access, the text type is called Memo and represents a variable-length string

of up to 231-1 (2,147,483,647) Unicode characters. You should use the OleDbType.Char

type identifier for parameters of this type.

582 A P P E N D I X B ■ S Q L D A T A T Y P E S

tinytext

The tinytext type maps to a string (System.String) in C# and is defined as follows:

• In MySQL, tinytext represents a variable-length string of up to 255 non-Unicode

characters. Depending on the data provider, you should use the OdbcType.Text or

MySqlClient.String type identifiers for parameters of this type.

• There is no equivalent in SQL Server or Microsoft Access.

varchar

The varchar type maps to a string (System.String) in C# and is defined as follows:

• In SQL Server, varchar represents a variable-length string of up to 8,000 non-Unicode

characters. You should use the SqlDbType.VarChar type identifier for parameters of this type.

• In MySQL, varchar represents a variable-length string of up to 65,535 non-Unicode

characters. Depending on the data provider, you should use the OdbcType.VarChar or

MySqlClient.String type identifiers for parameters of this type.

• There is no equivalent in Microsoft Access.

SQL Server 2005 defines a new type varchar(max) that allows 231-1 (2,147,483,647)

non-Unicode characters to be stored. This is still a string in C#, but you should use the

SqlDbType.Text type identifier for parameters of this type.

Numeric Types
Like .NET types, data types are available in SQL Server and MySQL for both integer and floating-

point values. However, there’s a difference in implementation. Both databases assume by

default that these types are signed—that is, they have negative values—but only MySQL gives

you the option to make a type unsigned (by clicking the UNSIGNED check box in MySQL Query

Browser).

In addition, all numeric types are fixed-length data types. If a field contains a value that

doesn’t use all of its allocated value, it’s padded with spaces. In MySQL Query Browser, if you

click the ZEROFILL check box, numeric values are padded with zeros instead of spaces.

Autonumbers

Supporting the notion that primary key fields must contain unique values, all three database

types can auto-generate unique integer values for ID (primary key) fields. They can also generate

globally unique ID fields (GUIDs)—128-bit hexadecimal numbers that are both random and

unique. The following are the various ways to do this:

• To auto-generate integers in SQL Server, set the field’s data type to one of the integer

values and set IsIdentity to true. The properties IdentitySeed and IdentityIncrement

let you set the first value to be generated for the field and the difference between each

subsequent value, respectively.

A P P E N D I X B ■ S Q L D A T A T Y P E S 583

• To auto-generate GUIDs in SQL Server, set the field’s data type to uniqueidentifier and

its default value to newid().

• To auto-generate integers in the Jet engine, set the field’s data type to AutoNumber.

• To auto-generate GUIDs in the Jet engine, set the field’s data type to ReplicationID and

then set Autogenerate to true.

• MySQL supports only auto-generated integers. Set the field’s data type to one of the

integer data types and set AUTO_INCREMENT to true.

Integer Types

Integer types are those types that can hold only nondecimal numbers.

bigint

You should use bigint only if you’re absolutely sure that the integers you need to store cannot

fit in an int data field. The bigint type represents an 8-byte integer and maps to a long

(System.Int64) in C#. It is defined as follows:

• In SQL Server, bigint can take values between -263 (-9,223,372,036,854,775,808) and

263-1 (9,223,372,036,854,775,807). You should use the SqlDbType.BigInt type identifier

for parameters of this type.

• For a signed bigint, MySQL allows the same range of values as SQL Server. An unsigned

bigint can represent a range of integers between 0 and 264 (18,446,744,073,709,551,616).

Depending on the data provider, you should use the OdbcType.BigInt or

MySqlClient.Int64 type identifiers for parameters of this type.

• There is no equivalent in Microsoft Access.

bit

The bit type is typically used as the data type to store Boolean values. Columns of type bit

can’t have indexes on them. The bit type maps to a bool (System.Boolean) in C# and is defined

as follows:

• In SQL Server, bit is an integer type that can take two values: 0 or 1. You should use the

SqlDbType.Bit type identifier for parameters of this type.

• In MySQL, bit is an integer type that can take two values: 0 or 1. It’s also known as

bool or boolean. Depending on the data provider, you should use the OdbcType.Bit

or MySqlClient.Bit type identifiers for parameters of this type.

• In Microsoft Access, bit is called Yes/No and can take the values of Yes (1) or No (0).

You should use the OleDbType.Boolean type identifier for parameters of this type.

584 A P P E N D I X B ■ S Q L D A T A T Y P E S

int

The int type represents a 4-byte integer and maps to an int (System.Int32) in C#. It is defined

as follows:

• In SQL Server, an int represents a range of integers between -231 (-2,147,483,648) and

231-1 (2,147,483,647). You should use the SqlDbType.Int type identifier for parameters of

this type.

• For a signed int, MySQL uses the same definition as SQL Server. An unsigned int can

represent a range of integers between 0 and 232 (4,294,967,296). Depending on the data

provider, you should use the OdbcType.Int or MySqlClient.Int32 type identifiers for

parameters of this type.

• In Microsoft Access, an int type is represented as a Number data type and a Long Integer

field size. It supports the same range of values as SQL Server, and you should use the

OleDbType.Integer type identifier for parameters of this type.

mediumint

The mediumint type represents a 3-byte integer and has no direct mapping in .NET. The closest

is an int in C#. It is defined as follows:

• A signed mediumint in MySQL represents a range of integers between -223 (-8,388,608)

and 223-1 (8,388,607). An unsigned mediumint can represent a range of integers between

0 and 224 (16,777,216). Depending on the data provider, you should use the

OdbcType.Int or MySqlClient.Int24 type identifiers for parameters of this type.

• There is no equivalent in SQL Server or Microsoft Access.

smallint

The smallint type represents a 2-byte integer and maps to a short (System.Int16) in C#. It is

defined as follows:

• In SQL Server, a smallint represents a range of integers between -215 (-32,768) and

215-1 (32,767). You should use the SqlDbType.SmallInt type identifier for parameters

of this type.

• For a signed smallint, MySQL uses the same definition as SQL Server. An unsigned

smallint can represent a range of integers between 0 and 216 (65,536). Depending on the

data provider, you should use the OdbcType.SmallInt or MySqlClient.Int16 type identifiers

for parameters of this type.

• In Microsoft Access, a smallint type is represented as a Number data type and an Integer

field size. It supports the same range of values as SQL Server, and you should use the

OleDbType.SmallInt type identifier for parameters of this type.

A P P E N D I X B ■ S Q L D A T A T Y P E S 585

tinyint

The tinyint type represents a 1-byte integer and maps to a sbyte (System.SByte) in C#. It is

defined as follows:

• In SQL Server, a tinyint represents a range of integers between 0 and 255. You should

use the SqlDbType.TinyInt type identifier for parameters of this type.

• For an unsigned tinyint, MySQL uses the same definition as SQL Server. A signed

tinyint can represent a range of integers between -128 and 127. Depending on the data

provider, you should use the OdbcType.TinyInt or MySqlClient.Byte type identifier for

parameters of this type.

• In Microsoft Access, a tinyint type is represented as a Number data type and a Byte

field size. It supports the same range of values as SQL Server, and you should use the

OleDbType.TinyInt type identifier for parameters of this type.

decimal

The decimal type represents a number range defined by a maximum number of digits (its precision)

and the maximum number of digits that can be used to the right of the decimal point (its scale).

It maps to a decimal (System.Decimal) in C# and is defined as follows:

• In SQL Server, the decimal type can have a maximum precision of 38. The default precision

is 18, and the default scale is 0. You should use the SqlDbType.Decimal type identifier for

parameters of this type.

• In MySQL, the decimal type can have a maximum precision of 65 and a maximum scale

of 30. The default precision is 10, and the default scale is 0. Depending on the data

provider, you should use the OdbcType.Decimal or MySqlClient.Decimal type identifier

for parameters of this type.

• In Microsoft Access, the decimal type is represented as a Number data type and a Decimal

field size. The default precision is 18, and the default scale is 0. You should use the

OleDbType.Number type identifier for parameters of this type.

Variable-Size Floating-Point Numbers

The decimal type specifies a fixed number of digits both before and after the decimal point, and

will always store the number you want exactly as you enter it. With variable-size floating-point

numbers, the value that is stored may be imprecise. The more bytes that are used to store the

number, the more precise it will be.

586 A P P E N D I X B ■ S Q L D A T A T Y P E S

4-Byte Floating-Point Numbers

A 4-byte (32-bit) floating-point number represents a fixed range of values between 3.40E38 to

-1.18E-38 for negative values, zero, and 1.18E-38 to 3.40E38 for positive values. It maps to a float

(System.Single) in C# and is defined as follows:

• In SQL Server, a 4-byte floating-point number is a real. You should use the

SqlDbType.Real type identifier for parameters of this type.

• In MySQL, a 4-byte floating-point number is a float. Depending on the data provider,

you should use the OdbcType.Real or MySqlClient.Float type identifier for parameters of

this type.

• In Microsoft Access, a 4-byte floating-point number is represented as a Number data type

and a Single field size. You should use the OleDbType.Single type identifier for parameters

of this type.

8-Byte Floating-Point Numbers

An 8-byte (64-bit) floating-point number represents a fixed range of values between 1.79E308

to -2.23E-308 for negative values, zero, and 2.23E-308 to 1.79E308 for positive values. It maps to a

double (System.Double) in C# and is defined as follows:

• In SQL Server, an 8-byte floating-point number is a float. You should use the

SqlDbType.Float type identifier for parameters of this type.

• In MySQL, an 8-byte floating-point number is a double. Depending on the data provider,

you should use the OdbcType.Double or MySqlClient.Double type identifier for parame-

ters of this type.

• In Microsoft Access, an 8-byte floating-point number is represented as a Number data

type and a Double field size. You should use the OleDbType.Double type identifier for

parameters of this type.

Date and Time Types
All three databases support “instance-in-time” fields, but only MySQL supports time unit types.

date

The date type maps to a System.DateTime in C# without a time specified (00:00:00). It is defined

as follows:

• In MySQL, a date represents a date between 1000-01-01 and 9999-12-31. Depending on

the data provider, you should use the OdbcType.Date or MySqlClient.Date type identifiers for

parameters of this type.

• There is no equivalent in SQL Server or Microsoft Access.

A P P E N D I X B ■ S Q L D A T A T Y P E S 587

datetime

The datetime type maps to a System.DateTime in C# and is defined as follows:

• In SQL Server, datetime represents a date and time combination between

00:00:00 on Jan. 1, 1753, through to 23:59:59 on Dec. 31, 9999. You should use

the SqlDbType.DateTime type identifier for parameters of this type.

• In MySQL, datetime represents a date and time combination between 00:00:00 on Jan. 1,

1000, through to 23:59:59 on Dec. 31, 9999. Depending on the data provider, you should

use the OdbcType.DateTime or MySqlClient.Datetime type identifier for parameters of

this type.

• In Microsoft Access, a datetime is represented as a Date/Time data type and represents

a date and time combination between 00:00:00 on Jan. 1, 1000, through to 23:59:59 on

Dec. 31, 9999. You should use the OleDbType.DBDate type identifier for parameters of

this type.

smalldatetime

The smalldatetime type maps to a System.DateTime in C# and is defined as follows:

• In SQL Server, smalldatetime represents a date and time combination between

00:00:00 on Jan. 1, 1900, through to 23:59:59 on June 6, 2079. You should use the

SqlDbType.SmallDateTime type identifier for parameters of this type.

• There is no equivalent in MySQL or Microsoft Access.

time

The time type maps to a System.TimeSpan in C# and is defined as follows:

• In MySQL, time represents a period of time in the format HH:MM:SS between

-838:59:59 and 838:59:59. Depending on the data provider, you should use the

OdbcType.Time or MySqlClient.Time type identifier for parameters of this type.

• There is no equivalent in SQL Server or Microsoft Access.

timestamp

The timestamp type maps to a byte array in C# and is defined as follows:

• In SQL Server, a timestamp represents an automatically generated 8-byte binary number

(which is guaranteed to be unique within a database) given to the field when its row is

added to the table or modified. More information can be found at http://msdn.microsoft.

com/en-us/library/ms182776.aspx. You should use the SqlDbType.Timestamp type identifier

for parameters of this type.

588 A P P E N D I X B ■ S Q L D A T A T Y P E S

• In MySQL, a timestamp is a date and time value automatically generated and given to the

field when its row is added to the table or modified. More information can be found at

http://dev.mysql.com/doc/refman/5.0/en/timestamp-4-1.html. Depending on the data

provider, you should use the OdbcType.Timestamp or MySqlClient.Timestamp type identi-

fier for parameters of this type.

• There is no equivalent in Microsoft Access.

year

The year type maps to an int (System.Int32) in C# without a day, month, or time specified. It is

defined as follows:

• In MySQL, a year represents a range of years from 1901 to 2155 if you’re using four digits

and 1970 to 2066 if you’re using two digits. Depending on the data provider, you should

use the OdbcType.Int or MySqlClient.Year type identifier for parameters of this type.

• There is no equivalent in SQL Server or Microsoft Access.

Binary Types
All databases define a few data types for binary data for storing items such as compiled programs,

images, and audio. You’ll see the rather unflattering acronym for binary data in general—BLOBs,

for Binary Large OBjects.

SQL Server Binary Types

SQL Server has three binary types: binary, image, and varbinary.

binary

The binary type maps to a byte array in C# and represents a fixed-length binary sequence of up

to 8,000 bytes. You should use the SqlDbType.Binary type identifier for parameters of this type.

image

The image type maps to a byte array in C# and represents a variable-length binary sequence

of up to 231-1 (2,147,483,647) bytes. You should use the SqlDbType.Image type identifier for

parameters of this type.

varbinary

The varbinary type maps to a byte array in C# and represents a variable-length binary sequence

of up to 8,000 bytes. You should use the SqlDbType.VarBinary type identifier for parameters of

this type.

A P P E N D I X B ■ S Q L D A T A T Y P E S 589

MySQL Binary Types

MySQL has four binary types: blob, longblob, mediumblob, and tinyblob.

blob

The blob type maps to a byte array in C# and represents a variable-length binary sequence of

up to 65,535 bytes. Depending on the data provider, you should use the OdbcType.VarBinary or

MySqlClient.Blob type identifier for parameters of this type.

longblob

The longblob type maps to a byte array in C# and represents a variable-length binary sequence

of up to 232-1 (4,294,967,295) bytes. Depending on the data provider, you should use the

OdbcType.VarBinary or MySqlClient.LongBlob type identifier for parameters of this type.

mediumblob

The mediumblob type maps to a byte array in C# and represents a variable-length binary sequence

of up to 224-1 (16,777,215) bytes. Depending on the data provider, you should use the OdbcType.

VarBinary or MySqlClient.MediumBlob type identifier for parameters of this type.

tinyblob

The tinyblob type maps to a byte array in C# and represents a variable-length binary sequence

of up to 255 bytes. Depending on the data provider, you should use the OdbcType.VarBinary or

MySqlClient.TinyBlob type identifier for parameters of this type.

Microsoft Access Binary Data

Microsoft Access handles binary data through a single type, OLE Object, which allows you to

store as much binary data as there is space on disk. You should use the OleDbType.VarBinary

type identifier for parameters of this type.

Miscellaneous Types
Several types aren’t easily classifiable into the previous categories. These include

enum('value1','value2',...), money, set('value1','value2',...), smallmoney, and

uniqueidentifier.

enum('value1','value2',...)

The enum('value1','value2',...) type, defined only in MySQL, allows you to define a column

that contains one of the values defined for the enum. For more information, see http://dev.

mysql.com/doc/refman/5.0/en/enum.html.

590 A P P E N D I X B ■ S Q L D A T A T Y P E S

money

The money type maps to a decimal (System.Decimal) in C# and is defined as follows:

• In SQL Server, money represents a range of monetary values from -922,337,203,685,477.5808

to 922,337,203,685,477.5807 with an accuracy of four decimal places. You should use the

SqlDbType.Money type identifier for parameters of this type.

• In Microsoft Access, the money type is specified as a Currency data type and supports the

same range of values as SQL Server. You should use the OleDbType.Currency type identifier

for parameters of this type.

• There is no equivalent in MySQL.

set('value1','value2',...)

The set('value1','value2',...) type, defined only in MySQL, allows you to define a column

that contains up to 64 of the values defined for the set. For more information, see http://dev.

mysql.com/doc/refman/5.0/en/set.html.

smallmoney

The smallmoney type, defined only in SQL Server, maps to a decimal (System.Decimal) in C# and

allows you to hold a monetary value from -214,748.3648 to 214,748.3647 with an accuracy of

four decimal places. You should use the SqlDbType.SmallMoney type identifier for parameters of

this type.

uniqueidentifier

The uniqueidentifier type maps to a System.Guid in C# and is defined as follows:

• In SQL Server, uniqueidentifier denotes that the field will hold a GUID. You should use

the SqlDbType.Uniqueidentifier type identifier for parameters of this type.

• In Microsoft Access, a uniqueidentifier is represented as a Number data type and

a Replication ID field size. You should use the OleDbType.Guid type identifier for

parameters of this type.

• There is no equivalent in MySQL.

591

■ ■ ■

A P P E N D I X C

SQL Primer

This appendix summarizes the basic syntax for SELECT, INSERT, UPDATE, and DELETE queries.

This isn’t intended as a full reference, but as a recap of how to use the queries in ASP.NET,

as demonstrated in the examples in this book.

In this appendix, the SQL keywords are shown in all uppercase letters. Optional elements

of a query are surrounded by brackets. User-defined elements of a query are in italics.

Note that SQL keywords don’t need to be in uppercase, and the queries don’t need to be

separated over many lines, as they are shown in this appendix. These conventions just make it

easier to read and understand them. SQL is case-insensitive, except for cases where the database

server insists that table and column names are case-sensitive, which depends on how your

database server is configured. If you’ve followed the installation instructions in Appendix A,

then both SQL Server 2005 and MySQL 5.0 are case-insensitive. However, you should endeavor

to be consistent in your letter casing, because it will reduce the chances of problems cropping

up later.

You can find Microsoft’s Transact-SQL reference online at http://msdn.microsoft.com/

en-us/library/ms189826.aspx. You can find MySQL’s SQL reference online at http://dev.

mysql.com/doc/refman/5.0/en/sql-syntax.html. Each section in this appendix includes links

relevant to the specific query from these references.

■Tip Two good books on SQL in general are The Programmer’s Guide to SQL by Cristian Darie and Karlie

Watson (1-59059-218-2; Apress, 2003) and Teach Yourself SQL in 10 Minutes by Ben Forta (0-67232-567-5;

Sams, 2004). Both are good introductory guides to the subtleties of SQL not covered here.

SELECT
The purpose of a SELECT query is to return some information from the database. This informa-

tion may be any of the following:

• A single scalar value returned as an object by a call to ExecuteScalar()

• A table of values returned as a single result inside a DataReader object by a call to

ExecuteReader()

• A set of tables of values returned as multiple results inside a DataReader object

592 A P P E N D I X C ■ S Q L P R I M E R

• A table returned into a DataSet via a DataAdapter’s Fill() method

• A set of results returned from a SqlDataSource

The syntax of the SELECT query looks like this:

SELECT <select column list>

FROM <table>

 [<join expression>]

[WHERE <constraints>]

[ORDER BY <order column list>]

This query has the following five pieces:

• A select column list to be retrieved from the database. Generally, this is a comma-

separated list of column names from the database, the * wildcard (meaning every

column in the given table should be returned), or an aggregate function on a set of

columns such as COUNT() or TOP().

• The name of the table from which the selection should originate.

• An optional join expression determining how other tables should be linked to the infor-

mation in the table. There can be as many join expression statements as needed to

retrieve the required data from other tables in the database.

• An optional constraints prefixed by the WHERE clause that allow you to filter the data to

be returned. The constraints isn’t a comma-separated list. Each condition is joined by

one of the three Boolean conditions OR, AND, or NOT and is a comparison of a column to

either a literal value or another column.

• An optional comma-separated order column list indicating which columns the results

of the SELECT query should be ordered by. By default, they’re organized into ascending

order. Adding the keyword DESC to a column in the ORDER BY clause will sort that column

in descending order.

For example, to retrieve the names of all the family members in a genealogy database, use

the following query:

SELECT MemberName FROM familymember

If you want to retrieve all the details about the dogs in the family, use the following query:

SELECT * FROM familymember

WHERE MemberSpecies = 'dog'

To retrieve the Social Security number for every member of the family born before 1987,

use the following query:

SELECT familymember.MemberName, financialdetail.SSN

FROM familymember

 INNER JOIN financialdetail

 ON financialdetail.MemberID = familymember.MemberID

WHERE MemberBirthdate < '01/01/1987'

A P P E N D I X C ■ S Q L P R I M E R 593

Note that some of the elements of SELECT have been left out for simplicity’s sake and because

they aren’t covered in the book. For a complete look at SELECT, check out the following links:

• SQL Server: http://msdn.microsoft.com/en-us/library/ms189499.aspx

• MySQL: http://dev.mysql.com/doc/refman/5.0/en/select.html

INSERT
The purpose of an INSERT query is to add some new information to a table in a database. This

new data must conform to the rules and constraints already laid out on the table, or an error

will be returned. INSERT queries are called through a DataAdapter’s Update() method, executed

by calling ExecuteNonQuery() on a Command object (which returns the number of rows in the

table the query has added), or called through a SqlDataSource.

The syntax of the INSERT query looks like this:

INSERT [INTO] <table name> [(<column list>)]

VALUES (<column value list>)

This query has the following five pieces:

• The optional keyword INTO to make the query more readable.

• The table name that determines the table to which the information will be added.

• The optional (comma-separated) column list that names the columns in the new row to

which you’re giving values. This list must be surrounded by parentheses.

• The keyword VALUES that separates the column list from the column value list.

• The (comma-separated) column value list that contains a value for each of the columns

in the column list for the new row. Each value can be a literal, an expression saying how

a value is to be determined from the values of other columns (firstname + ' ' + surname,

for example), the keyword DEFAULT indicating that the column should take its default

value as defined in the database, or NULL. This list must be surrounded by parentheses.

The number of the items in the column list should equal the number of items in the

column value list and be ordered in the same way. Thus, the first column named in the column

list will be filled with the first value in the column value list, the second with the second, and

so on. If a column list isn’t supplied, the column value list must supply a new value for every

column in the table.

For example, to add a newcomer to a family database, use the following query:

INSERT INTO familymember

 (MemberID, MemberName, MemberBirthdate, MemberSpecies)

VALUES (25, 'Spot', '14/04/04', 'Cat')

For more information about the INSERT query, try these links:

• SQL Server: http://msdn.microsoft.com/en-us/library/ms174335.aspx

• MySQL: http://dev.mysql.com/doc/refman/5.0/en/insert.html

594 A P P E N D I X C ■ S Q L P R I M E R

UPDATE
The purpose of an UPDATE query is to modify some already existing information in a table in the

database. UPDATE queries are called through a DataAdapter’s Update() method, executed by

calling ExecuteNonQuery() on a Command object (which returns the number of rows in the

table the query has modified), or called through a SqlDataSource.

The syntax of the UPDATE query looks like this:

UPDATE <table name>

SET column1 name = expression1,

 column2 name = expression2,

 .

 .

 .

 columnM name = expressionM

[WHERE <constraints>]

This query has the following four pieces:

• The table name that identifies the table in which data will be updated.

• The keyword SET to denote the start of the updated information.

• A comma-separated list of assignments where individual columns are set to given

values.

• An optional constraints prefixed by the WHERE clause that allows you to filter the data to

be updated.

For example, to change a female family member’s name in the family database, use the

following query:

UPDATE familymember

SET MemberName = 'Jane Maharry'

WHERE MemberName='Jane Randall'

For more information about the UPDATE query, try these links:

• SQL Server: http://msdn.microsoft.com/en-us/library/ms177523.aspx

• MySQL: http://dev.mysql.com/doc/refman/5.0/en/update.html

DELETE
The purpose of a DELETE query is to remove one or more rows of information from a table in a

database. DELETE queries are called through a DataAdapter’s Update() method, executed by

calling ExecuteNonQuery() on a Command object (which returns the number of rows in the

table the query has deleted), or called through a SqlDataSource.

The syntax of the DELETE query looks like this:

DELETE [FROM] <table name>

[WHERE <constraints>]

A P P E N D I X C ■ S Q L P R I M E R 595

This query has the following three pieces:

• The optional keyword FROM to make the query more readable.

• The table name that determines the table from which data will be deleted.

• An optional constraints prefixed by the WHERE clause that allows you to filter the data to

be deleted.

For example, to remove all cats from the family database, use the following query:

DELETE FROM familymember

WHERE MemberSpecies = 'Cat'

Note that calling DELETE without a WHERE clause removes all the rows from a table but does not

remove the table itself. Also, you should check whether your databases will DELETE data regard-

less of whether the DELETE query breaks referential integrity constraints. Some do; some don’t.

For more information about the DELETE query, try these links:

• SQL Server: http://msdn.microsoft.com/en-us/library/ms189835.aspx

• MySQL: http://dev.mysql.com/doc/refman/5.0/en/delete.html

597

■ ■ ■

A P P E N D I X D

Sample Database Tables

This appendix contains the complete structure of and data for the four tables in the sample

database used in the examples in this book. Use it in conjunction with the instructions given in

Chapter 2 to build the sample database. Alternatively, use the instructions at the end of this

appendix for generating the databases automatically.

Note that if you’re creating a MySQL database, all tables must be InnoDB-type tables.

In SQL Server 2005 and MySQL 5.0, the sample database has a user account called BAND

attached to it. Refer to Chapter 2 to see how to add this user account to the database.

598 A P P E N D I X D ■ S A M P L E D A T A B A S E T A B L E S

The Manufacturer Table
The Manufacturer table contains the columns listed in Table D-1 and the data listed in Table

D-2. Table D-1 also lists the properties of each column that you should set (or ensure that

they’re set as specified).

Table D-1. Columns in the Manufacturer Table

Column Name Microsoft Access SQL Server 2005 MySQL 5.0

ManufacturerID DataType: Autonumber

PrimaryKey: true

DataType: int

PrimaryKey: true

Is Identity: true

Allow Nulls: false

DataType: integer

PrimaryKey: true

AUTO_INCREMENT: true

Not Null: true

ManufacturerName DataType: Text

Size: 50

Required: Yes

DataType: varchar

Length: 50

Allow Nulls: false

DataType: varchar

Length: 50

Not Null: true

ManufacturerCountry DataType: Text

Size: 50

Required: No

DataType: varchar

Length: 50

Allow Null: true

DataType: varchar

Length: 50

Not Null: false

ManufacturerEmail DataType: Text

Size: 100

Required: No

DataType: varchar

Length: 100

Allow Null: true

DataType: varchar

Length: 100

Not Null: false

ManufacturerWebsite DataType: Text

Size: 100

Required: No

DataType: varchar

Length: 100

Allow Null: true

DataType: varchar

Length: 100

Not Null: false

A P P E N D I X D ■ SA M P L E D A T AB A SE T A B L E S 599

Ta
b

le
 D

-2
.

D
a

ta
 i

n
 t

h
e

M
a

n
u

fa
ct

u
re

r
T

a
b

le

M
an

u
fa

ct
u

re
rI

D
M

an
u

fa
ct

u
re

rN
am

e
M

an
u

fa
ct

u
re

rC
o
u

n
tr

y
M

a
n

u
fa

c
tu

re
rE

m
a

il
M

a
n

u
fa

ct
u

re
rW

e
b

si
te

1
A

p
p

le
U

S
A

la
c

k
e

y
@

a
p

p
le

.c
o

m
h

tt
p

:/
/w

w
w

.a
p

p
le

.c
o

m

2
C

re
a

ti
v

e
S

in
g

a
p

o
re

so
m

e
g

u
y

@
c

re
a

ti
v

e
.c

o
m

h
tt

p
:/

/w
w

w
.c

re
a

ti
v

e
.c

o
m

3
iR

iv
e

r
K

o
re

a
k

n
o

c
k

k
n

o
c

k
@

ir
iv

e
r.

c
o

m
h

tt
p

:/
/w

w
w

.i
ri

v
e

r.
c

o
m

4
M

S
I

T
a

iw
a

n
h

e
ll

o
@

m
si

c
o

m
p

u
te

r.
c

o
.u

k
h

tt
p

:/
/w

w
w

.m
si

c
o

m
p

u
te

r.
c

o
.u

k

5
R

io
U

S
A

g
re

e
ti

n
g

s@
ri

o
.c

o
m

h
tt

p
:/

/w
w

w
.r

io
.c

o
m

6
S

a
n

D
is

k
U

S
A

h
e

y
h

e
y

@
sa

n
d

is
k

.c
o

m
h

tt
p

:/
/w

w
w

.s
a

n
d

is
k

.c
o

m

7
S

o
n

y
Ja

p
a

n
h

i_
sa

n
@

so
n

y
.c

o
.j

p
h

tt
p

:/
/w

w
w

.s
o

n
y

.c
o

m

8
C

o
w

o
n

K
o

re
a

m
o

o
m

o
o

@
c

o
w

o
n

.c
o

m
h

tt
p

:/
/w

w
w

.c
o

w
o

n
.c

o
m

9
F

ro
n

ti
e

r
L

a
b

s
H

o
n

g
 K

o
n

g
fr

o
n

td
e

sk
@

fr
o

n
ti

e
rl

a
b

s.
c

o
m

h
tt

p
:/

/w
w

w
.f

ro
n

ti
e

rl
a

b
s.

c
o

m

1
0

S
a

m
su

n
g

Ja
p

a
n

m
a

sh
im

a
sh

i@
sa

m
su

n
g

.c
o

.j
p

h
tt

p
:/

/w
w

w
.s

a
m

su
n

g
.c

o
m

600 A P P E N D I X D ■ S A M P L E D A T A B A S E T A B L E S

The Player Table
The Player table contains the columns listed in Table D-3 and the data listed in Table D-4.

Table D-3 also lists the properties of each column that you should set (or ensure that they’re set

as specified).

Table D-3. Columns in the Player Table

Column Name Microsoft Access SQL Server 2005 MySQL 5.0

PlayerID DataType: Autonumber

PrimaryKey: true

DataType: int

PrimaryKey: true

Is Identity: true

Allow Nulls: false

DataType: integer

PrimaryKey: true

AUTO_INCREMENT: true

Not Null: true

PlayerName DataType: Text

Size: 50

Required: Yes

DataType: varchar

Length: 50

Allow Nulls: false

DataType: varchar

Length: 50

Not Null: true

PlayerManufacturerID DataType: Number

Field Size: Long Integer

Required: Yes

DataType: int

Allow Null: false

DataType: integer

Not Null: true

PlayerCost DataType: Number

Field Size: Decimal

Required: Yes

DataType: decimal

Size: 10, 2

Allow Null: false

DataType: decimal

Size: 10, 2

Not Null: true

PlayerStorage DataType: Text

Size: 50

Required: Yes

DataType: varchar

Length: 50

Allow Null: false

DataType: varchar

Length: 50

Not Null: true

A P P E N D I X D ■ SA M P L E D A T AB A SE T A B L E S 601

Table D-4. Data in the Player Table

PlayerID PlayerName PlayerManufacturerID PlayerCost PlayerStorage

1 iPod Shuffle 1 99.00 Solid State

2 MuVo V200 2 96.00 Solid State

3 iFP-700 Series 3 149.00 Solid State

4 iFP-900 Series 3 199.00 Solid State

5 MegaPlayer 521 4 93.00 Solid State

6 Forge 5 119.00 Solid State

7 Digital Audio Player 6 135.00 Solid State

8 Network Walkman NW-E99 7 138.00 Solid State

9 iPod 1 209.00 Hard Disk

10 iPod Mini 1 169.00 Hard Disk

11 iPod Photo 1 309.00 Hard Disk

12 iAudio M3 8 249.00 Hard Disk

13 Zen Micro 2 138.00 Hard Disk

14 Zen Touch 2 169.00 Hard Disk

15 L1 9 149.00 Hard Disk

16 H10 3 189.00 Hard Disk

17 H300 Series 3 319.00 Hard Disk

18 Carbon 5 169.00 Hard Disk

19 Napster YH-920 10 179.00 Hard Disk

20 Network Walkman NW-HD3 7 215.00 Hard Disk

602 A P P E N D I X D ■ S A M P L E D A T A B A S E T A B L E S

The Format Table
The Format table contains the columns listed in Table D-5 and the data listed in Table D-6.

Table D-5 also lists the properties of each column that you should set (or ensure that they’re set

as specified).

Table D-5. Columns in the Format Table

Column Name Microsoft Access SQL Server 2005 MySQL 5.0

FormatID DataType: Autonumber

PrimaryKey: true

DataType: int

PrimaryKey: true

Is Identity: true

Allow Nulls: false

DataType: integer

PrimaryKey: true

AUTO_INCREMENT: true

Not Null: true

FormatName DataType: Text

Size: 10

Required: Yes

DataType: varchar

Length: 10

Allow Nulls: false

DataType: varchar

Length: 10

Not Null: true

Table D-6. Data in the Format Table

FormatID FormatName

1 wav

2 mp3

3 aac

4 wma

5 asf

6 ogg

7 atrac

8 aiff

A P P E N D I X D ■ SA M P L E D A T AB A SE T A B L E S 603

The WhatPlaysWhatFormat Table
The WhatPlaysWhatFormat table contains the columns listed in Table D-7 and the data listed

in Table D-8. Table D-7 also lists the properties of each column that you should set (or ensure

that they’re set as specified).

Table D-7. Columns in the WhatPlaysWhatFormat Table

Column Name Microsoft Access SQL Server 2005 MySQL 5.0

WPWFPlayerID DataType: Number

Field Size: Long Integer

PrimaryKey: true

Required: Yes

DataType: int

PrimaryKey: true

Allow Nulls: false

DataType: integer

PrimaryKey: true

Not Null: true

WPWFFormatID DataType: Number

Field Size: Long Integer

PrimaryKey: true

Required: Yes

DataType: int

PrimaryKey: true

Allow Nulls: false

DataType: integer

PrimaryKey: true

Not Null: true

604 A P P E N D I X D ■ S A M P L E D A T A B A S E T A B L E S

Table D-8. Data in the WhatPlaysWhatFormat Table

WPWFPlayerID WPWFFormatID WPWFPlayerID WPWFFormatID

1 1 11 1

1 2 11 2

1 3 11 8

2 2 12 1

2 4 12 2

3 2 12 4

3 4 12 5

3 5 12 6

3 6 13 2

4 2 13 4

4 4 14 1

4 5 14 2

4 6 14 4

5 1 15 1

5 2 15 2

5 4 15 4

6 2 16 2

6 4 16 4

7 2 17 1

7 4 17 2

8 2 17 4

8 7 17 5

9 1 17 6

9 2 18 2

9 3 18 4

9 8 19 2

10 1 19 4

10 2 20 2

10 3 20 4

10 8 20 6

A P P E N D I X D ■ SA M P L E D A T AB A SE T A B L E S 605

Using the Database Scripts
In the code download for this book (available from the Apress Web site, http://www.apress.com),

you’ll find a scripts folder, which contains two script files: sqlserver.sql and mysql.sql. You

can use these to automatically build the databases in SQL Server 2005 and MySQL 5.0, as described

in the following sections.

The code download also includes a Microsoft Access database, players.mdb, in the root of

the download. You can use this immediately as the data source for your pages.

■Caution By running these scripts, you erase any changes made to the contents of the database since its

creation. Therefore, save any changes you may want to keep before running these scripts.

Using a Script to Build the SQL Server 2005 Database

To refresh the SQL Server 2005 database, follow these steps:

1. Open SQL Server Management Studio and cancel any attempt to connect to an

existing database.

2. Select File ➤ Open ➤ File and select the sqlserver.sql file from the scripts folder

download (from wherever you’ve saved the files onto your machine).

3. When the Connect dialog box appears, connect to the localhost\BAND database server

using the sa account (which, if you’ve followed the setup instructions in Appendix A,

will have a password of bandpass).

4. Click the Execute button on the toolbar to run the script and refresh the database.

5. If this is a database refresh, you may receive the error shown in Figure D-1, but don’t

worry about it. The script is designed to build the database completely, and as you

already have the user account created (either manually or from the script previously),

you can’t create it again.

Figure D-1. You can’t re-create the user login if it already exists.

606 A P P E N D I X D ■ S A M P L E D A T A B A S E T A B L E S

Using a Script to Build the MySQL 5.0 Database

To refresh the MySQL 5.0 database follow these steps:

1. Open MySQL Query Browser and connect to the localhost database server using the

root account (which, if you’ve followed the setup instructions in Appendix A, will have

a password of bandpass).

2. Select File ➤ Open Script and select the mysql.sql file from the scripts folder

download (from wherever you’ve saved the files onto your machine).

3. Click the Execute button on the toolbar to run the script and refresh the database.

